Assessment & Rehabilitation of FAI in Elite Track & Field

Oliver Finlay – Consultant Physiotherapist UK Athletics

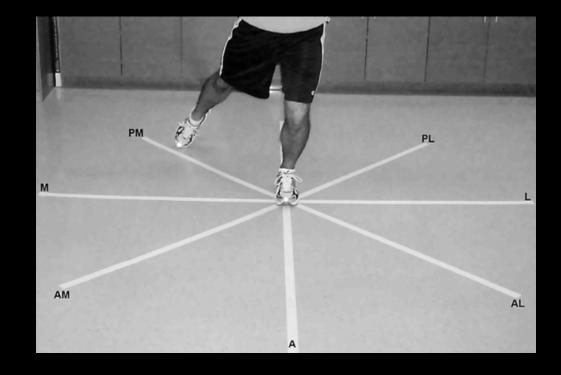
Subjective Assessment

• History of:

- pain & swelling (esp. post-exercise, persistent)
- giving way
- recurrence (inversion tibiotalar/subtalar instability)

• Difficulty:

- walking on unstable surfaces
- decelerating
- going down slope/stairs
- change of direction (potential medial instability)


Pain on Deceleration

Objective Assessment: Observations

- Postural alignment & muscle atrophy
- Joint effusion
- Hind foot position & first ray position
- Arch integrity (pes cavus or foot flat deformity resolving on double heel raise – medial instability)
- Fibular position/posterior malleolar space
- Talar position
- Fascial restrictions
- Proprioception (Romberg, sharpened Romberg, 1 leg stand, star excursion)
- Gait

Star Excursion Test

Objective Assessment: Tests

- Palpation (scar tissue/capsular thickening)
- Anterior drawer test (lateral instability)
- Stress inversion test (lateral instability)
- Stress eversion or ext rotation test (medial instability)
- Talar tilt test
- Syndesmosis test
- Tendon function & strength (peroneal tendon pathology [subluxation], tears/ruptures may lead to lateral instability, tib post tendon pathology may lead to medial instability)
- Muscle testing (arthrogenic inhibition) of intrinsics, tib ant, tib post, peroneii, soleus, gastrocnemius
- Joint ROM

- Arthrogenic inhibition of the peroneii & reduced activation is common following lateral ankle sprain
- ? a direct effect on FAI
- Deficits in eccentric invertor strength likely to contribute because of a reduced ability to assist in control of lateral displacement of shank over the weight-bearing foot

- Reduced eccentric plantar-flexor torque demonstrated in cohort of patients with FAI
- Potentially occurs either:

i) at time of injury (trauma occurring at gastroc/soleus complex as it crosses talo-crural jt)

ii) post-injury due to reduced motor unit excitability& subsequent arthrogenic inhibition of soleus

Tibialis Posterior

• Can be a victim of arthrogenic inhibition

 Inhibition affects tarsal stabilisation & role in balance

• Can cause functional foot flat deformity (resolves on double heel lift)

• Important role in talar stabilisation

 Inhibition causes decreased dorsiflexion, which can result in external rotation of lower limb in swing phase (tib post/altered Achilles tendon loading)

- Posterior fibular position post sprain injury
- Anterior talar position in incidences of decreased tib anterior activation
- Cuboid plantiflexion
- 1st MTP hypomobility

- Important proprioceptive role (Ruffini & Pacini corpsucles in fascia) (Stecco)
- Pain limits movement fascial fibrosis altered proprio – pain
 - (Langevin)
- Remote symptoms adhesions alter distribution of force thru fascia, leading to hyperstimulation of mechanoreceptors & symptoms remote to pathological tissue
- Force transmission (70% of muscle tension transmission is directed in series thru tendons)
 (Huijing)

Scar Tissue & Capsular Thickening

- Alters afferent fibre functioning within the joint – affects proprioception
- Affects joint ROM
- May lead to:
 - sinus tarsi syndrome
 - anterolateral impingement syndrome
- May contribute to FAI

Neuromuscular Deficits

- Impaired balance
- Reduced joint position sense
- Slower firing of peroneal muscles to inversion perturbation of the ankle
- Slowed nerve conduction velocity
- Impaired cutaneous sensation
- Strength deficits

Comparison between uninjured & injured sides (strength, power & proprioception)

Cross-over effect will influence ipsilateral & contralateral joints respectively & influence joints far more proximal than the ankle

Limitations of Research

- Much of the research has been done considering walking gait as opposed to running gait
- Therefore can't be directly applied to the athletic performance population with regards sport-specific task performance

Rehabilitation Objectives

- Restoration of:
 - joint alignment
 - fascial integrity
 - neuromuscular function & movement control
 - MT strength/power/work capacity
 - sports specific function & capabilities

Restore Joint Mobility, Stability & Functional Integration

Triple Hop Test

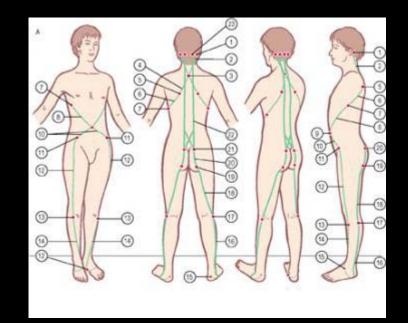
Measuring distance as an indicator of strength & power

Star Excursion Balance Test

Measuring distance of excursion as an indicator of balance & functional stability

Joint Alignment & ROM

- Joint manipulation
- Joint mobilisation
- Joint stabilisation
- Myofascial release (pain mediated by neurofibres at a superficial level)
- Scar tissue mobilisation/manipulation
- Tissue loading (mechanical strain cell proliferation, orientation, matrix synthesis & maturation)
- Passive, AA, active & resisted ROM exercises


 Important role in proprioception, functional chain stabilisation & movement, force transfer, arthrogenic function & tissue nutrition

- MFR thru full body chains:
 - passive with associated movement
 - active with specific exercise patterns

Spiral Line

Below the ASIS:

- TFL
- Anterior ITB
- Tibial Condyle
- Tib Ant
- Medial Arch
- Tib Ant/Peroneus L
- Peroneus L
- Biceps Fem

(Myers)

Neuromuscular Function & Motor Control

- Neural & myofascial mobilisation
- Re-education of normal movement
- Re-education of joint position sense (mechanoreceptor afferent response to end range ligament tension – efferent response to slow or reverse direction of joint movement) - PNF
- Proximal–Distal proprioceptive challenges & athletics drills

Proximal-Distal Proprioceptive Challenges

Motor Control

Physiological Goal	Correct inhibited muscle or dysfunctional movement pattern	
Intensity	Low <30% RM or MVC – Low to moderate load to perform well	
Volume (Rest)	3 – 5 sets x 20 reps (< 60 seconds)	
	3 – 5 sets x 30 – 60 seconds if isometrics	
Frequency	3 – 7 x per week (2 x daily if practical)	
Fatigue	Not necessary BUT should get an active muscle sensation	
Gains	Improvement in movement only	
Neural Adaptation	Acute potentiation of Type I	
	Coordination of joint increases	
	 Reflexive low force change 	
	Reversal of pain inhibition	
	 Atrophy (if enough volume) 	
Muscle Adaptation	Low force level control	
	Slow twitch stiffness	
	Slow twitch hypertrophy if high volume	
	Increased length if through full AROM	
Typical Exercise	Pilates	
	> Drills	
	Movement pattern exercises	

Motor Control - FAI Stabilisation Example

- Green Theraband Daily (Motor Control)
 - Circuit 1 20 reps slow & controlled
 - Alternated with
 - Circuit 2 20 reps fast

C 1 - C 2 - C 1 - C 2 - C 1 (2 min recovery)

Set A - theraband around foot

Diagonal down & out to up & in, with theraband applying resistance away from body
 Diagonal down & out to up & in, with theraband applying resistance towards body

3) Diagonal down & in to up & out, with theraband applying resistance away from body4) Diagonal down & in to up & out, with theraband applying resistance towards body

5) Straight up & down, with the raband applying resistance away from body 6) Straight up & down, with the raband applying resistance towards body

Set B - theraband around big toe

Straight up & down, with theraband applying resistance away from body
 Straight up & down, with theraband applying resistance towards body

Set C - theraband around other toes

Straight up & down, with theraband applying resistance away from body
 Straight up & down, with theraband applying resistance towards body

Set D - track based footwork drills

A Skips – B Skips – Lateral Side Shuffle A – Lateral Side Shuffle B – Lateral Side Shuffle C – Backward Walks – Straight Knee Scissors – Bent Knee Scissors – Over Ankle Dribbles – Over Calf Dribbles – Over Knee Dribbles

Track-Based Footwork Drills

Strength, Power & Endurance

• Address neural/arthrogenic muscle inhibition & resultant muscle atrophy

 Assess where the functional chain is breaking down – address weakness first in isolation, then build in to multi-joint, functional movements recruiting through kinetic chains

- Muscle Atrophy programme to gain hypertrophy & achieve DOMS
- Capillarisation programme as warm up
- Potentiation programme as warm up for power or plyometric exercises
- Recovery Plus programme to incorporate the decontracture, endorphinic & capillarisation components after hard sessions

Maximal Strength

Physiological Goal	Performance enhancement – general physical capacity	
Intensity	>80% RM or MVC – explosive intention – trying to accelerate the load applied	
Volume (Rest)	➢ 3 − 6 sets x 5 reps	
	3 – 5 sets x 5 reps x 5 second holds if isometric (2 – 3 minutes rest)	
Frequency	1 – 3 x per week	
Fatigue		
Gains	Strength	
Neural Adaptation	Increased muscle unit activation	
	Reduced spinal inhibition mechanisms	
Muscle Adaptation	Fast twitch hypertrophy IIx – IIa in a few weeks	
	Reversal of detraining	
	Tendon hypertrophy of 5% at each end	
	Increase in passive stiffness & stress strain capabilities	
Typical Exercise	Barbell squat > body weight on bar	
	Step up 0.5 x body weight	
	Leg press > 2 x body weight DL & 1 – 1.5 x SL	

Maximal Strength - Triceps Surae

Example

Exercise	Reps & sets	%age 1RM
Stiff legged walks with overhead weight	10 x 3-5	N/A
Straight leg, leg press calf raises	5 x 3-5	60-70-80-80-80
Med Ball Squeeze Bridges	10 x 3-5	N/A
Seated calf raises	8 x 3-5	60-70-80-80-80
Heel raise back squats	5 x 3-5	60-70-80-80-80
4 Way Standing Theraband Hip Work	10 x 3-5	N/A
Barbell loaded heel lowers off step	5 x 3-5	60-70-80-80-80
High Pulls	5 x 3-5	60-70-80-80-80
Side lying adductor cycles	10 x 3-5	N/A
Bent leg, leg press heel lowers	5 x 3-5	60-70-80-80-80
Step up & drive on box	5 x 3-5	60-70-80-80-80

Physiological Goal	Performance enhancement – conversion of specific strength	
Intensity	Maximal power or acceleration for target load or movement	
Volume (Rest)	3 – 6 sets x 2 – 3 reps for weights	
	3 – 6 sets x 5 – 10 reps for jumps or throws	
Frequency		
Fatigue	No fatigue	
Gains	Power	
Neural Adaptation	Increased muscle unit activation & intermuscular coordination	
	Reduced inhibition on ground contact	
Muscle Adaptation	Fast twitch hypertrophy	
	Some tendon hypertrophy & increased passive stiffness if high volume	
	Power work may maintain tendon adaptation	
Typical Exercise	Multi-joint explosive lifts	
	Jumps	
	Plyometrics	
	Throws	

Power - Posterior Chain Example

Exercise	Reps & sets	%age 1RM
Plank	60 secs x 3-5	N/A
High Pulls	3 x 3-5	70-80-90-100-100
Small box step offs to jumps	15 x 3-5	N/A
4 Way Standing Theraband Hip Work	10 x 3-5	N/A
Hang Cleans	3 x 3-5	70-80-90-100-100
Box Jumps	3 x 3-5	N/A
Backward Theraband Crucifix Walks	60 secs x 3-5	N/A
Split Jerk	3 x 3-5	70-80-90-100-100
Med Ball Throws (High)	3 x 3-5	N/A
Barbell Roll-Outs	10 x 3-5	N/A
Snatch	3 x 3-5	70-80-90-100-100
Med Ball Throws (Long)	3 x 3-5	N/A

Work Capacity

Physiological Goal	Strength endurance	
	Hypertrophy	
	General strength – promotes muscle balance	
Intensity	60 – 80% RM of MVC	
Volume (Rest)	3 – 5 sets x 5 – 12 reps for weights	
	3 – 5 sets x 30 – 60 seconds for isometrics (1 – 2 minutes rest)	
Frequency	2 – 3 x per week	
Fatigue	Necessary	
Gains	Strength endurance	
	Hypertrophy	
	General strength – promotes muscle balance	
Neural Adaptation	None	
Muscle Adaptation	Whole muscle hypertrophy	
	5% increase in tendon hypertrophy at each end	
Typical Exercise	Any exercise that you can load	
	Stabilise adjacent joints	
	Work muscle through length	
	e.g. Nordic Curl	

Work Capacity - Intrinsics Example

Exercise	Reps & sets	%age 1RM
Standing on tip toes	60 secs x 3-5	N/A
Standing on pointe	60 secs x 3-5	N/A
Toe towel curls	60 secs x 3-5	N/A
Arch raises with extended toes	60 secs x 3-5	N/A

- Work with coaches to ensure that end stage rehabilitation & return to training is a seamless transition
- Ensure that the coach & athlete are educated as to how to incorporate specific warm-up, maintenance & sufficient recovery components into the training programme to ensure that risk of recurrence is reduced

- Anderson et al. Ankle Instability. *Foot Ankle Spec.* 2011, vol 4: no 1; pp 46-53
- Baumhauer et al. A prospective study of ankle injury risk factors. *Am J Sports Med.* 1995, vol 23: pp 564-570
- Eren et al. The role of a posteriorly positioned fibula in ankle sprain. Am J Sports Med. 2003, vol 31: pp 995-998
- Finni et al. Mapping of movement in the isometrically contracting human soleus muscle reveal details of its structural & functional complexity. *J Appl Physiol.* 2003, vol 95: pp 2128-2133
- Fox et al. Eccentric plantar-flexor torque deficits in participants with functional ankle instability. *J of Athl Training.* 2008, vol 43: pp 51-54
- Hertel. Functional Instability Following Lateral Ankle Sprain. Sports Med. 2000, vol 29: pp 361-371
- Higham & Biewener. Integration within & between muscles during terrestrial locomotion: effects of incline & speed. *J of Exp Biol.* 2008, vol 211: pp 2303-2316
- Kaminski & Hartsell. Factors contributing to chronic ankle instability: a strength perspective. J of Athl Training. 2002, vol 37: pp 394-405
- Kaminski et al. Eversion strength analysis of uninjured & functionally unstable ankles. *J of Athl Training.* 1999, vol 34: pp 239-245
- Louwerens et al. Peroneus longus & tibialis anterior muscle activity in the stance phase. Acta Orthop Scand. 1995, vol 66: pp 517-523
- Mattacola & Dwyer. Rehabilitation of the ankle after acute sprain or chronic instability. J of Athl Training. 2002, vol 37: pp 413-429
- Palmieri-Smith et al. Peroneal activation deficits in persons with functional ankle instability. *Am J Sports Med.* 2009, vol 37: pp 982-988
- Scranton et al. The relationship between chronic ankle instability & variations in mortise anatomy & impingement spurs. *Foot Ankle Int.* 2000, vol 21: pp 657-664
- Willems et al. Proprioception & muscle strength in subjects with a history of ankle sprains & chronic instability. J of Athl Training. 2002, vol 37: pp 487-493

Thank You!!!

<u>Oliver@HumanPerformanceGlobal.com</u> www.OliverFinlay.com

